
Python Lists

mylist = ["apple", "banana", "cherry"]

List
Lists are used to store multiple items in a single variable.

Lists are one of 4 built-in data types in Python used to store collections of data,
the other 3 are Tuple, Set, and Dictionary, all with different qualities and usage.

Lists are created using square brackets:

Example

Create a List:

thislist = ["apple", "banana", "cherry"]

print(thislist)

List Items
List items are ordered, changeable, and allow duplicate values.

List items are indexed, the first item has index [0], the second item has index
[1] etc.

Ordered

https://www.w3schools.com/python/python_tuples.asp
https://www.w3schools.com/python/python_sets.asp
https://www.w3schools.com/python/python_dictionaries.asp

When we say that lists are ordered, it means that the items have a defined
order, and that order will not change.

If you add new items to a list, the new items will be placed at the end of the
list.

Note: There are some list methods that will change the order, but in general:
the order of the items will not change.

Changeable
The list is changeable, meaning that we can change, add, and remove items in a
list after it has been created.

Allow Duplicates
Since lists are indexed, lists can have items with the same value:

Example

Lists allow duplicate values:

thislist = ["apple", "banana", "cherry", "apple", "cherry"]

print(thislist)

List Length
To determine how many items a list has, use the len() function:

Example

Print the number of items in the list:

https://www.w3schools.com/python/python_lists_methods.asp

thislist = ["apple", "banana", "cherry"]

print(len(thislist))

List Items - Data Types
List items can be of any data type:

Example

String, int and boolean data types:

list1 = ["apple", "banana", "cherry"]

list2 = [1, 5, 7, 9, 3]

list3 = [True, False, False]

A list can contain different data types:

Example

A list with strings, integers and boolean values:

list1 = ["abc", 34, True, 40, "male"]

type()
From Python's perspective, lists are defined as objects with the data type 'list'

<class 'list'>

Example

What is the data type of a list?

mylist = ["apple", "banana", "cherry"]

print(type(mylist))

The list() Constructor
It is also possible to use the list() constructor when creating a new list.

Example

Using the list() constructor to make a List:

thislist = list(("apple", "banana", "cherry")) # note the double
round-brackets

print(thislist)

Python Collections (Arrays)
There are four collection data types in the Python programming language:

● List is a collection which is ordered and changeable. Allows duplicate
members.

● Tuple is a collection which is ordered and unchangeable. Allows duplicate
members.

● Set is a collection which is unordered, unchangeable*, and unindexed. No
duplicate members.

● Dictionary is a collection which is ordered** and changeable. No duplicate
members.

*Set items are unchangeable, but you can remove and/or add items whenever
you like.

**As of Python version 3.7, dictionaries are ordered. In Python 3.6 and earlier,
dictionaries are unordered.

https://www.w3schools.com/python/python_tuples.asp
https://www.w3schools.com/python/python_sets.asp
https://www.w3schools.com/python/python_dictionaries.asp

When choosing a collection type, it is useful to understand the properties of that
type. Choosing the right type for a particular data set could mean retention of
meaning, and, it could mean an increase in efficiency or security.

Python - Access List Items

Access Items
List items are indexed and you can access them by referring to the index
number:

Example

Print the second item of the list:

thislist = ["apple", "banana", "cherry"]

print(thislist[1])

Note: The first item has index 0.

Negative Indexing

Negative indexing means start from the end

-1 refers to the last item, -2 refers to the second last item etc.

Example

Print the last item of the list:

thislist = ["apple", "banana", "cherry"]

print(thislist[-1])

Range of Indexes

You can specify a range of indexes by specifying where to start and where to
end the range.

When specifying a range, the return value will be a new list with the specified
items.

Example

Return the third, fourth, and fifth item:

thislist = ["apple", "banana", "cherry", "orange", "kiwi", "melon",
"mango"]

print(thislist[2:5])

Note: The search will start at index 2 (included) and end at index 5 (not
included).

Remember that the first item has index 0.

By leaving out the start value, the range will start at the first item:

Example

This example returns the items from the beginning to, but NOT including,
"kiwi":

thislist = ["apple", "banana", "cherry", "orange", "kiwi", "melon",
"mango"]

print(thislist[:4])

By leaving out the end value, the range will go on to the end of the list:

Example

This example returns the items from "cherry" to the end:

thislist = ["apple", "banana", "cherry", "orange", "kiwi", "melon",
"mango"]

print(thislist[2:])

Range of Negative Indexes

Specify negative indexes if you want to start the search from the end of the list:

Example

This example returns the items from "orange" (-4) to, but NOT including
"mango" (-1):

thislist = ["apple", "banana", "cherry", "orange", "kiwi", "melon",
"mango"]

print(thislist[-4:-1])

Check if Item Exists
To determine if a specified item is present in a list use the in keyword:

Example

Check if "apple" is present in the list:

thislist = ["apple", "banana", "cherry"]

if "apple" in thislist:

print("Yes, 'apple' is in the fruits list")

Python - Change List Items

Change Item Value
To change the value of a specific item, refer to the index number:

Example

Change the second item:

thislist = ["apple", "banana", "cherry"]

thislist[1] = "blackcurrant"

print(thislist)

Change a Range of Item Values
To change the value of items within a specific range, define a list with the new
values, and refer to the range of index numbers where you want to insert the
new values:

Example

Change the values "banana" and "cherry" with the values "blackcurrant" and
"watermelon":

thislist = ["apple", "banana", "cherry", "orange", "kiwi", "mango"]

thislist[1:3] = ["blackcurrant", "watermelon"]

print(thislist)

If you insert more items than you replace, the new items will be inserted where
you specified, and the remaining items will move accordingly:

Example

Change the second value by replacing it with two new values:

thislist = ["apple", "banana", "cherry"]

thislist[1:2] = ["blackcurrant", "watermelon"]

print(thislist)

Note: The length of the list will change when the number of items inserted does
not match the number of items replaced.

If you insert less items than you replace, the new items will be inserted where
you specified, and the remaining items will move accordingly:

Example

Change the second and third value by replacing it with one value:

thislist = ["apple", "banana", "cherry"]

thislist[1:3] = ["watermelon"]

print(thislist)

Insert Items
To insert a new list item, without replacing any of the existing values, we can
use the insert() method.

The insert() method inserts an item at the specified index:

Example

Insert "watermelon" as the third item:

thislist = ["apple", "banana", "cherry"]

thislist.insert(2, "watermelon")

print(thislist)

Note: As a result of the example above, the list will now contain 4 items.

Python - Add List Items

Append Items
To add an item to the end of the list, use the append() method:

Example

Using the append() method to append an item:

thislist = ["apple", "banana", "cherry"]

thislist.append("orange")

print(thislist)

Insert Items
To insert a list item at a specified index, use the insert() method.

The insert() method inserts an item at the specified index:

Example

Insert an item as the second position:

thislist = ["apple", "banana", "cherry"]

thislist.insert(1, "orange")

print(thislist)

Note: As a result of the examples above, the lists will now contain 4 items.

Extend List
To append elements from another list to the current list, use the extend()

method.

Example

Add the elements of tropical to thislist:

thislist = ["apple", "banana", "cherry"]

tropical = ["mango", "pineapple", "papaya"]

thislist.extend(tropical)

print(thislist)

The elements will be added to the end of the list.

Add Any Iterable
The extend() method does not have to append lists, you can add any iterable
object (tuples, sets, dictionaries etc.).

Example

Add elements of a tuple to a list:

thislist = ["apple", "banana", "cherry"]

thistuple = ("kiwi", "orange")

thislist.extend(thistuple)

print(thislist)

Python - Remove List Items

Remove Specified Item
The remove() method removes the specified item.

Example

Remove "banana":

thislist = ["apple", "banana", "cherry"]

thislist.remove("banana")

print(thislist)

Remove Specified Index
The pop() method removes the specified index.

Example

Remove the second item:

thislist = ["apple", "banana", "cherry"]

thislist.pop(1)

print(thislist)

If you do not specify the index, the pop() method removes the last item.

Example

Remove the last item:

thislist = ["apple", "banana", "cherry"]

thislist.pop()

print(thislist)

The del keyword also removes the specified index:

Example

Remove the first item:

thislist = ["apple", "banana", "cherry"]

del thislist[0]

print(thislist)

The del keyword can also delete the list completely.

Example

Delete the entire list:

thislist = ["apple", "banana", "cherry"]

del thislist

Try it Yourself »

Clear the List

https://www.w3schools.com/python/trypython.asp?filename=demo_list_del2

The clear() method empties the list.

The list still remains, but it has no content.

Example

Clear the list content:

thislist = ["apple", "banana", "cherry"]

thislist.clear()

print(thislist)

Try it Yourself »

Python - Loop Lists
❮ PreviousNext ❯

Loop Through a List
You can loop through the list items by using a for loop:

Example

Print all items in the list, one by one:

https://www.w3schools.com/python/trypython.asp?filename=demo_list_clear
https://www.w3schools.com/python/python_lists_remove.asp
https://www.w3schools.com/python/python_lists_comprehension.asp

thislist = ["apple", "banana", "cherry"]

for x in thislist:

print(x)

Try it Yourself »

Learn more about for loops in our Python For Loops Chapter.

Loop Through the Index Numbers
You can also loop through the list items by referring to their index number.

Use the range() and len() functions to create a suitable iterable.

Example

Print all items by referring to their index number:

thislist = ["apple", "banana", "cherry"]

for i in range(len(thislist)):

print(thislist[i])

Try it Yourself »

The iterable created in the example above is [0, 1, 2].

https://www.w3schools.com/python/trypython.asp?filename=demo_list_loop
https://www.w3schools.com/python/python_for_loops.asp
https://www.w3schools.com/python/trypython.asp?filename=demo_list_loop2

Using a While Loop
You can loop through the list items by using a while loop.

Use the len() function to determine the length of the list, then start at 0 and
loop your way through the list items by refering to their indexes.

Remember to increase the index by 1 after each iteration.

Example

Print all items, using a while loop to go through all the index numbers

thislist = ["apple", "banana", "cherry"]

i = 0

while i < len(thislist):

print(thislist[i])

i = i + 1

Try it Yourself »

Learn more about while loops in our Python While Loops Chapter.

Looping Using List Comprehension
List Comprehension offers the shortest syntax for looping through lists:

Example

https://www.w3schools.com/python/trypython.asp?filename=demo_list_while_loop
https://www.w3schools.com/python/python_while_loops.asp

A short hand for loop that will print all items in a list:

thislist = ["apple", "banana", "cherry"]

[print(x) for x in thislist]

Python - List Comprehension
❮ PreviousNext ❯

List Comprehension
List comprehension offers a shorter syntax when you want to create a new list
based on the values of an existing list.

Example:

Based on a list of fruits, you want a new list, containing only the fruits with the
letter "a" in the name.

Without list comprehension you will have to write a for statement with a
conditional test inside:

Example

fruits = ["apple", "banana", "cherry", "kiwi", "mango"]

newlist = []

for x in fruits:

https://www.w3schools.com/python/python_lists_loop.asp
https://www.w3schools.com/python/python_lists_sort.asp

if "a" in x:

newlist.append(x)

print(newlist)

Try it Yourself »

With list comprehension you can do all that with only one line of code:

Example

fruits = ["apple", "banana", "cherry", "kiwi", "mango"]

newlist = [x for x in fruits if "a" in x]

print(newlist)

Try it Yourself »

The Syntax
newlist = [expression for item in iterable if condition == True]

The return value is a new list, leaving the old list unchanged.

https://www.w3schools.com/python/trypython.asp?filename=demo_list_without_comprehension
https://www.w3schools.com/python/trypython.asp?filename=demo_list_comprehension

Condition

The condition is like a filter that only accepts the items that valuate to True.

Example

Only accept items that are not "apple":

newlist = [x for x in fruits if x != "apple"]

Try it Yourself »

The condition if x != "apple" will return True for all elements other than
"apple", making the new list contain all fruits except "apple".

The condition is optional and can be omitted:

Example

With no if statement:

newlist = [x for x in fruits]

Try it Yourself »

Iterable

The iterable can be any iterable object, like a list, tuple, set etc.

Example

https://www.w3schools.com/python/trypython.asp?filename=demo_list_comprehension_if
https://www.w3schools.com/python/trypython.asp?filename=demo_list_comprehension_noif

You can use the range() function to create an iterable:

newlist = [x for x in range(10)]

Try it Yourself »

Same example, but with a condition:

Example

Accept only numbers lower than 5:

newlist = [x for x in range(10) if x < 5]

Try it Yourself »

Expression

The expression is the current item in the iteration, but it is also the outcome,
which you can manipulate before it ends up like a list item in the new list:

Example

Set the values in the new list to upper case:

newlist = [x.upper() for x in fruits]

Try it Yourself »

You can set the outcome to whatever you like:

https://www.w3schools.com/python/trypython.asp?filename=demo_list_comprehension_range
https://www.w3schools.com/python/trypython.asp?filename=demo_list_comprehension_range2
https://www.w3schools.com/python/trypython.asp?filename=demo_list_comprehension_upper

Example

Set all values in the new list to 'hello':

newlist = ['hello' for x in fruits]

Try it Yourself »

The expression can also contain conditions, not like a filter, but as a way to
manipulate the outcome:

Example

Return "orange" instead of "banana":

newlist = [x if x != "banana" else "orange" for x in fruits]

Try it Yourself »

The expression in the example above says:

"Return the item if it is not banana, if it is banana return orange".

Python - Sort Lists
❮ PreviousNext ❯

Sort List Alphanumerically
List objects have a sort() method that will sort the list alphanumerically,
ascending, by default:

https://www.w3schools.com/python/trypython.asp?filename=demo_list_comprehension_hello
https://www.w3schools.com/python/trypython.asp?filename=demo_list_comprehension_if_else
https://www.w3schools.com/python/python_lists_comprehension.asp
https://www.w3schools.com/python/python_lists_copy.asp

Example

Sort the list alphabetically:

thislist = ["orange", "mango", "kiwi", "pineapple", "banana"]

thislist.sort()

print(thislist)

Try it Yourself »

Example

Sort the list numerically:

thislist = [100, 50, 65, 82, 23]

thislist.sort()

print(thislist)

Try it Yourself »

Sort Descending
To sort descending, use the keyword argument reverse = True:

Example

https://www.w3schools.com/python/trypython.asp?filename=demo_list_sort
https://www.w3schools.com/python/trypython.asp?filename=demo_list_sort_num

Sort the list descending:

thislist = ["orange", "mango", "kiwi", "pineapple", "banana"]

thislist.sort(reverse = True)

print(thislist)

Try it Yourself »

Example

Sort the list descending:

thislist = [100, 50, 65, 82, 23]

thislist.sort(reverse = True)

print(thislist)

Try it Yourself »

Customize Sort Function
You can also customize your own function by using the keyword argument key
= function.

The function will return a number that will be used to sort the list (the lowest
number first):

https://www.w3schools.com/python/trypython.asp?filename=demo_list_sort_desc
https://www.w3schools.com/python/trypython.asp?filename=demo_list_sort_num_desc

Example

Sort the list based on how close the number is to 50:

def myfunc(n):

return abs(n - 50)

thislist = [100, 50, 65, 82, 23]

thislist.sort(key = myfunc)

print(thislist)

Try it Yourself »

Case Insensitive Sort
By default the sort() method is case sensitive, resulting in all capital letters
being sorted before lower case letters:

Example

Case sensitive sorting can give an unexpected result:

thislist = ["banana", "Orange", "Kiwi", "cherry"]

thislist.sort()

print(thislist)

https://www.w3schools.com/python/trypython.asp?filename=demo_list_sort_key

Try it Yourself »

Luckily we can use built-in functions as key functions when sorting a list.

So if you want a case-insensitive sort function, use str.lower as a key function:

Example

Perform a case-insensitive sort of the list:

thislist = ["banana", "Orange", "Kiwi", "cherry"]

thislist.sort(key = str.lower)

print(thislist)

Try it Yourself »

Reverse Order
What if you want to reverse the order of a list, regardless of the alphabet?

The reverse() method reverses the current sorting order of the elements.

Example

Reverse the order of the list items:

thislist = ["banana", "Orange", "Kiwi", "cherry"]

thislist.reverse()

https://www.w3schools.com/python/trypython.asp?filename=demo_list_sort_case_sensitive
https://www.w3schools.com/python/trypython.asp?filename=demo_list_sort_lower

print(thislist)

Python - Copy Lists
❮ PreviousNext ❯

Copy a List
You cannot copy a list simply by typing list2 = list1, because: list2 will
only be a reference to list1, and changes made in list1 will automatically
also be made in list2.

There are ways to make a copy, one way is to use the built-in List method
copy().

Example

Make a copy of a list with the copy() method:

thislist = ["apple", "banana", "cherry"]

mylist = thislist.copy()

print(mylist)

Try it Yourself »

Another way to make a copy is to use the built-in method list().

Example

https://www.w3schools.com/python/python_lists_sort.asp
https://www.w3schools.com/python/python_lists_join.asp
https://www.w3schools.com/python/trypython.asp?filename=demo_list_copy

Make a copy of a list with the list() method:

thislist = ["apple", "banana", "cherry"]

mylist = list(thislist)

print(mylist)

Try it Yourself »

Python - Join Lists
❮ PreviousNext ❯

Join Two Lists
There are several ways to join, or concatenate, two or more lists in Python.

One of the easiest ways are by using the + operator.

Example

Join two list:

list1 = ["a", "b", "c"]

list2 = [1, 2, 3]

https://www.w3schools.com/python/trypython.asp?filename=demo_list_copy2
https://www.w3schools.com/python/python_lists_copy.asp
https://www.w3schools.com/python/python_lists_methods.asp

list3 = list1 + list2

print(list3)

Try it Yourself »

Another way to join two lists is by appending all the items from list2 into list1,
one by one:

Example

Append list2 into list1:

list1 = ["a", "b" , "c"]

list2 = [1, 2, 3]

for x in list2:

list1.append(x)

print(list1)

Try it Yourself »

Or you can use the extend() method, which purpose is to add elements from
one list to another list:

Example

https://www.w3schools.com/python/trypython.asp?filename=demo_list_concat1
https://www.w3schools.com/python/trypython.asp?filename=demo_list_concat2

Use the extend() method to add list2 at the end of list1:

list1 = ["a", "b" , "c"]

list2 = [1, 2, 3]

list1.extend(list2)

print(list1)

Try it Yourself »

Python - List Methods
❮ PreviousNext ❯

List Methods
Python has a set of built-in methods that you can use on lists.

Method Description

append() Adds an element at the end of the list

clear() Removes all the elements from the list

https://www.w3schools.com/python/trypython.asp?filename=demo_list_concat3
https://www.w3schools.com/python/python_lists_join.asp
https://www.w3schools.com/python/python_lists_exercises.asp
https://www.w3schools.com/python/ref_list_append.asp
https://www.w3schools.com/python/ref_list_clear.asp

copy() Returns a copy of the list

count() Returns the number of elements with the specified value

extend() Add the elements of a list (or any iterable), to the end of the
current list

index() Returns the index of the first element with the specified value

insert() Adds an element at the specified position

pop() Removes the element at the specified position

remove() Removes the item with the specified value

reverse() Reverses the order of the list

sort() Sorts the list

https://www.w3schools.com/python/ref_list_copy.asp
https://www.w3schools.com/python/ref_list_count.asp
https://www.w3schools.com/python/ref_list_extend.asp
https://www.w3schools.com/python/ref_list_index.asp
https://www.w3schools.com/python/ref_list_insert.asp
https://www.w3schools.com/python/ref_list_pop.asp
https://www.w3schools.com/python/ref_list_remove.asp
https://www.w3schools.com/python/ref_list_reverse.asp
https://www.w3schools.com/python/ref_list_sort.asp

